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Abstract. We evaluate the triply differential cross-section (TDCS) for photo double ionization of helium.
We use a C3 final continuum wave function with an interelectronic effective coordinate to express the nu-
clear screening. Comparison with the standard C3 model shows that the TDCS is enhanced in the threshold
region by effect of the reduced interelectronic repulsion introduced by the present model. A more accurate
description of the intermediate energy region is also obtained. Comparison with recent experimental data
shows a good overall agreement of the angular distributions. The theoretical PDI total cross-section shows
a relevant improvement in the intermediate energy region relative to the C3 model, which converges to
data for photon energies larger than 1 keV.

PACS. 32.80.Fb Photoionization of atoms and ions

1 Introduction

In the last few years, many efforts have been displayed to-
wards the experimental and theoretical understanding of
the ejection of two electrons from an atom due to single
photon impact. Although theoretical work begins about
40 years ago [1], measurements of the triply differential
cross-section (TDCS) for this process were not available
until the last decade. A description of recent experimen-
tal and theoretical work can be found in two recent re-
views [2,3].

Since photons do not distort the initial states as
charged particles do, the initial state to be considered is
the unperturbed ground state when He atoms are used.
The final system is defined by a pure three body Coulomb
state in the continuum. Initial states of different accuracy
have been obtained using variational methods since the
1930s. However, the situation complicates for the descrip-
tion of the three body continuum. A first approximation
to the final state can be obtained by neglecting the e−e
interaction and the non-orthogonal kinetic energy. This
leads to the C2 model which proposes as solution a prod-
uct of two independent Coulomb waves times plane waves.
Byron and Joachain, used this final state and showed
that this model gives reasonable values of the total cross-
section for photo double ionization (PDI) [4]. Shakeshaft
and collaborators [5,6] proposed the 2SC method, where
the final state Ψf is given as in the C2 function, but with
screened momentum-dependent effective nuclear charge,
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as first proposed by Rudge and Seaton [7]. This method
proved to give accurate results in magnitude and shape
for the equal energy sharing of the exceeding energy by
the emitted electrons [8].

The interelectronic potential is entirely considered by
the C3 approximation firstly introduced by Garibotti and
Miraglia [9] in ion–atom collisions and later applied to
electron–atom collisions by Brauner et al. [10]. The C3
wave function mainly consists in the product of three
Coulomb waves, each one representing the interaction be-
tween a pair of particles. Maulbetsch and Briggs, applied
the C3 model to calculate TDCSs for PDI of He [11], com-
paring its results with the C2 final state. The C2 approx-
imation erroneously predicts a finite TDCS for k1 = k2

(being k1,2 the momenta of the emitted electrons). Due to
the repulsive character of the interelectronic interaction, a
zero TDCS should be expected in that limit [11]. The C3
wave function besides satisfying the selection rules, gives
results which are in excellent agreement in shape with
the experimental data for both equal and unequal energy
sharing regime. This theory, however gives very low ab-
solute probabilities at low energies above the threshold,
and predicts absolute values of the TDCS, which decrease
exponentially in the threshold region. This is mainly due
to the normalization factor associated with the e−e in-
teraction [8], which predicts an exponential decay as the
energy decreases, instead of the power law dependence re-
sulting from Wannier theories. The C3 model accounts
for the repulsion correlation but misses the kinetic cor-
relation given by the non-orthogonal kinetic energy [12].
The kinetic correlation could be partially considered by
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introducing effective Sommerfeld parameters, depending
on the coordinates and momentums [13–16]. However, this
methodology applied to PDI proved to be not as efficient
as in electron–atom collisions, where an improvement of
the near threshold region has been achieved.

In the last few years, other approaches have succeeded
in obtaining accurate triply differential cross-sections
(TDCSs). The convergent close-coupling approach [17]
and the time-dependent close-coupling method [18] have
proved to give reliable predictions of PDI processes in
magnitude and angular shape also. Furthermore, their the-
oretical predictions in the velocity, length and acceleration
gauges, get coincident in a wide range of photon ener-
gies as the number of parameters of a Hylleras-type initial
wave function is increased. Another successful calculation
has been recently presented by Malegat et al. [19] using
the ab initio hyperespherical R-matrix method with semi-
classical outgoing waves. They find excellent agreement
with the experimental data and good agreement between
gauges.

However, an analytical final state wave function that
assures such an accuracy is not still available and is field
of continuous interest and research. The TDCS for PDI
is mainly determined by the final state wave function
when the three Coulomb-interacting particles are near
(i.e. r1, r2 < 20 a.u.) [15]. Usual approximated solutions
have been generated by continuation to short distances of
the correct asymptotic condition in the Ω0 region of the
configuration space, in which all three interparticle dis-
tances are large. This methodology does not assure that
the inner region is appropriately described though. Sim-
ilar comments can be done for the final state wave func-
tion recently introduced by Miraglia et al. [20] in terms of
the natural base. This base, presents the advantage that
the non-orthogonal kinetic energy usually neglected, could
then be partially incorporated through an expansion in
terms of Kummer functions.

Ward and Macek [21], have obtained approximated
wave functions to represent the two electron continuum.
They define an average fixed interelectronic distance,
which, properly chosen, compensates the exponential de-
cay of the C3 model near threshold. This average dis-
tance only depends in the total energy of electrons. How-
ever, these functions have the drawback that violate the
Redmond asymptotic condition in the Ω0 region.

In this work, we propose as final state wave function
a modified version of the C3 model, following the aim of
Ward and Macek. We perform a dilatation of the interelec-
tronic coordinate, by multiplying it by a energy dependent
real coefficient. Here, the interelectronic coordinate is not
fixed, and this assures validity of the Redmond asymptotic
conditions.

In Section 2, the theory is presented. In Section 3 re-
sults are shown. The differential cross-sections for 6 eV
and 20 eV exceeding energy and the PDI total cross-
section are calculated using the C3 wave and the present
model. The results are compared with available experi-
mental data. In Section 4, some conclusions are drawn.
Atomic units are used unless otherwise explicitly stated.

2 Theory

The triply differential cross-section (TDCS) for absorption
of a photon of energy Eω and emission of two electrons
with momenta k1,k2 is given by:

dσ

dΩ1dΩ2dE1
= 4π2αk1k2C

(G)
∣∣∣T (G)

fi

∣∣∣2
where α is the fine-structure constant. The energies of the
electrons are E1 = k2

1/2 and E2 = k2
2/2, and Ef = E1+E2

the total final energy. The T
(G)
fi transition amplitude is

given by

T
(G)
fi =

〈
Ψf |ε̂ · O(G)|Ψi

〉
. (1)

Here, the operator O(G) represents the matter-radiation
interaction in the dipole approximation. It could be ex-
pressed in three different gauges: O(V) = ∇1 +∇2,O(L) =
r1 + r2 and O(A) = ZT (r1/r3

1 + r2/r3
2), where V, L, A de-

note respectively velocity, length and acceleration gauges.
The coefficients C(G) are given by: C(V) = E−1

γ , C(L) =
Eγ , C(A) = E−3

γ .
The Ψf wave function represents the final state, where

the two electrons are in the continuum sharing the ex-
ceeding energy of the annihilated photon, and the Ψi wave
function, represents the He ground state. We consider a
linearly polarized photon incident in the direction of the
axis x with polarization vector ε̂ in the direction of the
z-axis. One of the electrons is emitted in the plane or-
thogonal to the x-axis with angle θ2 relative to z. The
direction of the other is determined by the angles φ1, rel-
ative to the yz-plane, and θ1 relative to ε̂.

The continuum of two electrons, has been usually rep-
resented by a C3 model [9,10],

ΨC3(k1,k2, r1, r2) = Nf eik1·r1+ik2·r2
1F1[ia1, 1, x1]

×1 F1[ia2, 1, x2] 1F1[ia3, 1, x3]. (2)

The coefficients ai = Ziµi/ki are the Sommerfeld param-
eters, xi = −ikiξi and ξi = ri + k̂i · ri, i = 1, 2, 3 are
generalized parabolic coordinates corresponding to each
pair of particles. Here, Zi, µi and ki indicate charges, re-
duced masses and momentum of each electron relative to
nucleus and between the electrons, respectively. The nor-
malization factor is fixed by the Redmond condition and
is given by:

Nf =
1

(2π)3

3∏
j=1

e−aj
π
2 Γ (1 − iaj). (3)

The term with j = 3 corresponds to the e−e repulsion
and produces a exponential decay of the TDCS at small
relative energies. Brauner et al. have shown that with the
factor Nf the C3 wave function is normalized to a six
dimensional delta function [22],∫

Ψ∗
C3(k

′
1,k

′
2, r1, r2)ΨC3(k1,k2, r1, r2)dr1dr2 =

δ(k′
1 − k1)δ(k′

2 − k2).
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This equation must be interpreted in the distribution
sense, and defined with a support weight function. Equa-
tion (3) indicates that the norm of the hypergeometric
functions in the C3 wave increases in the limit Ef → 0,
to compensate the exponential decay of the normalization
factor at this energy limit. Otherwise, the transition am-
plitude in equation (1) is mathematically a scalar product
of a C3 wave function with the function resulting from the
interaction and the initial state. The value of this matrix
element depends of the superposition of these functions in
the configuration space. It seems clear that the increase of
the norm of the hypergeometric functions is not enough to
compensate the normalization factor decrement as energy
approaches the threshold.

To correct this failure of the C3 model, Ward and
Macek [21] replace the interelectronic distance in the third
hypergeometric of the C3 function by a fixed average dis-
tance (xave

3 ). This xave
3 only depends in the total energy

of electrons and its functional form is determined by re-
quiring that the doubly differential cross-section satisfies
the Wannier limit at the threshold. However, these func-
tions have the drawback that are obtained sacrificing the
Redmond asymptotic condition in the Ω0 region,where the
particles are far away from each other. Large distance be-
havior of the wave function would not have much relevance
for PDI but it is important if one desires to use this wave
function in electron–atom collisions also.

Here we propose an alternative procedure by repre-
senting the continuum of two electrons with the following
wave function,

ΨSC3(k1,k2, r1, r2) = Nf eik1·r1+ik2·r2
1F1[ia1, 1, x1]

×1 F1[ia2, 1, x2] 1F1[ia3, 1, β x3]. (4)

The normalization constant Nf is obtained by requiring
the wave function to have outgoing unitary flux. The
asymptotic behavior of the wave function in the Ω0 re-
gion is given by

ΨSC3 −−−−−−→
x1,2,3→∞ Nf eik1·r1+ik2·r2

×
3∏

j=1

e
π
2 aj

Γ (1 − iaj)
e−ia3 log(β)e−iaj log(xj).

It could be seen that the Redmond asymptotic conditions
are fulfilled, and that the β parameter appears asymptot-
ically only through a phase factor. Therefore the normal-
ization remains as that of the C3 function.

We now analyze the Wannier region with this final
wave and a simple Slater initial state Ψi = Nie−Zs(r1+r2)

and in the velocity gauge. We assume that the electrons
leave the nuclear charge “almost” collinear and with equal
energy. Using integral representations of the Kummer hy-
pergeometric functions and neglecting terms of order k2

the transition amplitude gives:

T V
fi = − 1

Z6
s

NiNf ε̂ · B
∫ 1

0

dt

×
∫ 1

0

du

∫ 1

0

dv tia
∗
3−1(1 − t)−ia∗

3uia∗
1−1(1 − u)−ia∗

1

× via∗
2−1(1 − v)−ia∗

2

[
i64π2(Zs − ik2βt − ik2v)kk̂1

Zs − 16ikβt− 8ik(v + u)

+
i64π2(Zs − ik2βt − ik2u)kk̂2

Zs − 16ikβt − 8ik(v + u)

]

where B is given by

B =
3∏

j=1

1
Γ (ia∗

j )Γ (1 − ia∗
j )

·

As 0 < u, v < 1 and k → 0 we neglect terms of order
ku and kv, and integrating over the parameters t, u, v we
obtain,

T V
fi = − i8π2k

Z6
s

NiNf

[
1 + 7

(
1 − 16ikβ

Zs

) i
2k

]
× ε̂ ·

(
k̂1 + k̂2

)
. (5)

The first term, does not contribute near threshold due to
the exponential decay of the normalization constant Nf

and can be neglected. The normalization constant |Nf |2 is
given in this limit by [22],

|Nf |2 = (4π)2
π

k2

e
− π√

Ef

�
1+

(π−θ12)2

8

�

√
Ef

·

The Gaussian factor is in concordance with the results of
the second order Wannier theory, but the remaining ex-
ponential factor produces the fall of the theoretical TDCS
for small k. Then finally we obtain the following limit ex-
pression for the TDCS

dσ

dΩ1dΩ2dE1
=

3136N2
i απ3

Eγ Z12
s

√
Efe

1√
Ef

�
arctan

�
16
√

Efβ

Zs

�
−π

�

× e
−π (π−θ12)2

8
√

Ef (cos θ1 + cos θ2)2.

Note that in the threshold the equal sharing emission is
dominant and Ef = 2E1.

Now we must give an explicit expression for the β.
Correlation effects are expected to be neglectfull when the
exceeding energy Ef → ∞, and the transition amplitude is
correctly given by the C2 model. Therefore is reasonable
to require that β → 0 in the high energy limit. We will
assume a simple energy dependence:

β =
1√
Ef

· (6)
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Then the TDCS reads

dσ

dΩ1dΩ2dE1
=

3136N2
i απ3

Eγ Z12
s

√
Efe

arctan[ 16
Zs ]−π√
Ef

× e
−π (π−θ12)2

8
√

Ef (cos θ1 + cos θ2)2. (7)

Then it can be easily seen that the introduction of the
factor exp[arctan(16

√
Efβ/Zs)/

√
Ef ] leads to an enhance-

ment of the TDCS for Ef → 0 with respect to the stan-
dard C3 model. The last factor is the so-called “angular
factor” and it is obtained when simple plane waves are
used to represent the final state.

The ground state correlation effects are expected to
be small for low energy photons and equal energy shar-
ing emission but are more relevant for the unequal energy
sharing regime. Therefore we consider one of the simplest
correlated states for the ground state function of helium:

ΨGS2a = Ni(e−c1r1−c2r2 + e−c2r1−c1r2)

× (e−zcr12 + C0e−λr12) (8)

with Ni = 1.71749, c1 = 1.4096, c2 = 2.2058, C0 =
−0.6244, zc = 0.01 and λ = 0.244712. This gives a bound-
ing energy 〈E〉 = −2.9019 a.u. Note that 〈Eexact〉 =
−2.903724 a.u. The cusp condition value at the nucleus
for He is given by (∂Ψi/∂r1,2)r1,2=0/(Ψi)r1,2=0 = −2, for
the exact wave function. The cusp condition value at the
nucleus for the ΨGS2a wave function is Rcusp = −1.807.
This wave function is an adaptation of the Bonham and
Kohl GS2 correlated state [23], where we have calculated
the variational parameters to use zc, and avoid a cut-off.
This simple functional form allows for a calculation of the
transition amplitude using Nordsieck-like integrals [24].

We have used the final and initial waves given by equa-
tions (4, 8) respectively to evaluate the TDCS for photo
double ionization of helium as shown below. We choose β
according to equation (6). This β factor, leads to an en-
hancement of the TDCS for Ef < 2Ry and a diminishing
TDCS for Ef > 2Ry, where Ry is the Rydberg constant.
For the equal energy sharing Maulbetsch et al. [25] have
shown that the C3 model overestimates (underestimates)
the TDCS magnitude for Ef above (below) 2Ry. Kornberg
and Miraglia estimate that correct magnitudes are reached
with the C3 model for Ef above 1 keV [24]. In this sense
our β selection tends to correct the failure of the C3 model
not only in the low but also in the intermediate energy re-
gion as will be shown in the next section.

3 Results

We compare our theoretical results with the experimental
data obtained by Dörner et al. [26] using the COLTRIMS
technique [27]. With this technique one of the emitted
electrons is measured in coincidence with the recoil ion
and the dynamic of the three particles is given by conser-
vation rules. To collect a sufficient number of coincidence
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Fig. 1. TDCS as a function of θ2 for Eγ = 85 eV and E1/Ef =
0.1. Theories are given by: solid line: SC3 model in velocity
gauge; dot-dashed line: SC3 model in length gauge; dashed line:
C3 model in velocity gauge. The scaling factors associated to
the theories to reach the data are 5, 0.43 and 227 respectively.

events the detection solid angles must be large. For com-
parison with experiment the theoretical values must be
averaged inside the detection volume determined by the
energy and angular resolutions. This is a large computa-
tional task, when using the wave function in equation (4).
We have performed averages of TDCSs up to 15 points (fif-
teen different angular configurations inside the detection
volume) finding out that an angular five-point average is
enough to obtain a stable description of the main features.
Therefore, we average our TDCSs over a five point angu-
lar configuration (θi

1, φ
i
1) i = 1, ..., 5 within the angular

resolution, at the mean detection energy. The well known
selection rules [28], predict zeros for the TDCS for certain
angular configurations, at equal electron energy sharing.
These zeros become smoothed by the superposition of an-
gular configurations giving well established minimums in
the distributions. When θ1 = 40◦ and ϕ1 = ϕ2 = 0 the se-
lection rules predict zeros for the TDCS at θ2 = 40◦, 140◦
and 220◦ [28]. Equivalent zeros occur for other values of θ1.
These zeros are spreaded due to the wide angular resolu-
tion of the detector and become smoothed and angularly
shifted minimums in the observed electron distributions.
Theoretical values follow this trend when averaged over
the experimental resolution.

In Figures 1–3 we respectively consider R = E1/Ef =
0.1, 0.5, 0.9 for Ef = 6 eV. The detection angular range
is θ1 = (40◦−65◦) and ϕ1 = (0◦−20◦). The present the-
ory in velocity and length gauges is compared with the C3
model in velocity gauge. On sake of simplicity we have not
included the results of the C3 model in the length gauge.
The relation between the TDCS with the C3 model in
both gauges is similar to the relation observed for the SC3
model. In Figure 1, it could be seen that the predictions
in the velocity gauge of the SC3 and C3 models clearly
differ. This shows that the effect of the present model is
not simply a scaling factor, but a different modelling of
the zone where the electrons are supposed to be closer.
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Fig. 2. TDCS as a function of θ2 for Eγ = 85 eV and E1/Ef =
0.5. Theories are as in Figure 1. The corresponding scaling
factors are given by 2.3, 0.252 and 96.
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Fig. 3. TDCS as a function of θ2 for Eγ = 85 eV and E1/Ef =
0.9. Theories are as in Figure 1. The corresponding scaling
factors are 4.5, 0.405 and 194.

The results in the velocity and length gauges clearly dif-
fer in magnitude and so does the ratio between peaks.
However, the main features are well given by both forms.
In Figure 2 the equal energy regime is shown. It could be
seen that besides an scaling factor, the angular predictions
in both gauges for the SC3 coincide and could be hardly
distinguished one from the other. The results are also in
good agreement with the C3 ones. However the scaling
factor associated to reach the experiments is much higher
for the C3 model. In Figure 3 the slow electron angular
distribution is considered. The SC3 in the velocity gauge
leads to a better angular distribution than the C3 model
but clearly differs with the length gauge.

In Figures 4–6 we respectively consider R = E1/Ef =
0.1, 0.5, 0.9 for Ef = 20 eV. The detection angular range
is θ1 = (20◦−40◦) and ϕ1 = (0◦−20◦). In Figure 4, the
fast electron distribution is analyzed. The results of both
theories in the velocity gauge agree in shape but the SC3
results are again closer in magnitude to experiment. The
length gauge results again predict a different ratio between
peaks. In Figure 5 the electrons leave the atom equally
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Fig. 4. TDCS as a function of θ2 for Eγ = 99 eV and E1/Ef =
0.1. Theories are as in Figure 1. The corresponding scaling
factors associated to the theories are 1.5, 0.195 and 2.75.
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Fig. 5. TDCS as a function of θ2 for Eγ = 99 eV and E1/Ef =
0.5. Theories are as in Figure 1. The scaling factors associated
to the theories are 0.9, 0.108 and 1.62 respectively.

sharing the exceeding energy. It could be seen that the
angular predictions for both models are in close agree-
ment. The length gauge results, clearly differ in magni-
tude with the velocity gauge ones. By the other side, they
are in good shape agreement. In Figure 6 the slow elec-
tron distribution is presented. Again, both models lead
to similar angular distributions. It could be seen that the
length gauge calculations lead to a narrower peak than
the velocity form.

The TDCS evaluated in both gauges give good de-
scriptions of the angular distributions, but clearly dif-
fer in magnitude. Lucey et al. [15], have shown that for
equal energy electrons, the initial state correlation does
not play a substantial role in determining the angular dis-
tribution. When using initial states of different accuracy
small differences are observed in magnitude of the TDCS
in the velocity gauge. By the other side, large discrepan-
cies are obtained with the length gauge calculations. The
length gauge transition amplitude includes information
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Fig. 6. TDCS as a function of θ2 for Eγ = 99 eV and E1/Ef =
0.9. Theories are as in Figure 1. The scaling factors associated
to the theories are 1.5, 0.126 and 2.65 respectively.

from larger distances than the velocity gauge one, and en-
hances the relevance of the initial and final state behavior
at long distances.

Functionally simple bound states give with precision
the value of the bound energy, but the length TDCS
for PDI strongly depends of the spatial distribution of
this wave. In a recent work [29], Kheifets and Bray show
within the convergent close coupling (CCC) scheme that
the initial state correlation does play a leading role in the
agreement of the results of the velocity and length gauges.
They compare Hartree-Fock-type wave functions against
Hylleras-type wave functions in order to accurately repre-
sent the He ground state. They find that for Hylleras wave
functions the cross-sections in the length gauge converge
to the velocity gauge values as the number of parameters
considered increases. By the other side, Hartree-Fock wave
functions give disagreement between gauges even when a
large number of terms are included. In the present model
we found the disagreement between the magnitude of the
TDCS evaluated in the velocity and length gauges. How-
ever this is probably a consequence of the simple initial
state used and results could improve with a more sophis-
ticate bound state.

In Figure 7, we show the total cross-section for PDI
(σ2+) calculated in the velocity gauge as a function of
the photon energy. For comparison we include the exper-
imental data of Samson et al. [30]. For Eγ ≥ 100 eV, it
could be seen that the C3 model largely overestimates the
experimental data in the intermediate energy zone. Mean-
while the SC3 model leads to a good agreement with data
in shape and magnitude. The simple β(Ef ) proposed in
equation (6), represents an improvement of the standard
C3 model but it is not enough to compensate the exponen-
tial decreasing behavior of the TDCS in the limit Ef → 0.
It is well known that the total cross-section for PDI in this
limit is given by,

σ++ = σ0E
α
f (9)

where α = 1.056 is the Wannier exponent and σ0 is the
value of σ++ at Ef = 1 eV. Kossmann et al. [31], have
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Fig. 7. Total cross-section for PDI of He as a function of
the photon energy Eγ . Solid line: SC3; dashed line: C3. Both
models are evaluated in velocity gauge.

performed an extensive study of the threshold law equa-
tion (9). They have fit their experimental data with equa-
tion (9) obtaining the values of σ0 = 1.02×10−21 cm2 and
α = 1.05. They also found this threshold law meaningless
for exceeding energies above 2 eV. A further correction of
the SC3 model is required in the Wannier region. We have
assumed a very simple energy dependence for the β pa-
rameter and a good strategy to correct the Wannier region
could be given by expressing,

β =
f(Ef)√

Ef

where f(Ef) must be a function which goes to 1 as Ef →
∞. Therefore it could accept an expansion:

f(Ef) = 1 +
a1

Ef
+

a2

E2
f

+ ...

The aj parameters could be fit according to the results
of Kossmann et al. This correction to equation (6) would
then be appreciated in the low energy zone of the spectra
of Figure 7. This would be explored in detail in a forth-
coming work.

4 Conclusions

The C3 wave describes the e−e motion as independent
of the presence of the nucleus, and represents it by a
Coulomb continuum wave. The corresponding normaliza-
tion factor falls exponentially with decreasing relative mo-
mentum between the electrons, producing a TDCS that
violates the Wannier limit. In this paper we have intro-
duced a multiplicative parameter β in the interelectronic
coordinate that tights the e−e wave at short distances,



S. Otranto and C.R. Garibotti: C3-like wave function for the two electron continuum 291

indirectly accounting for the screening effect of the nu-
clear ion. This increases the superposition between the
final and initial state in the transition amplitude, and can
be chosen to compensate the exponential decrease of the
normalization.

The parameter β depends on the total energy of the
emerging electrons. We have proposed a functional form
that for large energies leads to an uncorrelated model,
and tends to correct the C3’s usual magnitude failure for
low and intermediate exceeding energies. The effects the
present modification introduces in the continuum wave
function, could be also seen in the Ω0 region, where a
phase factor resumes the accumulated phase that could
be attached to the nuclear presence.

We have calculated TDCSs for photon impact on He,
in the dipole approximation in the velocity and length
gauges. We found very good agreement in angular shape
with available experimental data and a clear enhancement
of the magnitude of the TDCS in the range 6–20 eV of
exceeding energy.

We have shown that the present model improves the
theoretical total cross-section for photon energies greater
than about 100 eV in contrast with the C3 model where
correct values are reached for energies greater than 1 keV.
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